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ABSTRACT 
We consider an architecture for a serverless distributed file system 
that does not assume mutual trust among the client computers. 
The system provides security, availability, and reliability by 
distributing multiple encrypted replicas of each file among the 
client machines. To assess the feasibility of deploying this system 
on an existing desktop infrastructure, we measure and analyze a 
large set of client machines in a commercial environment. In 
particular, we measure and report results on disk usage and 
content; file activity; and machine uptimes, lifetimes, and loads. 
We conclude that the measured desklop infrastructure would 
passably support our proposed system, providing availability on 
the order of one unfilled file request per user per thousand days. 
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1. INTRODUCTION 
We present an architecture for a serverless distributed file system 
and assess the feasibility of deploying this system on an existing 
desktop infrastructun~. The distinguishing feature of our proposed 
system is that it does not assume the client computers to be 
carefully administered Or mutually trusting. Instead, the system 
provides high availability (file access) and high reliability (file 
persistence) by making multiple replicas of each file and 
distributing them among the client machines. To determine how 
well such a system might work, we gathered usage data from a 
large number of client machines at Microsoft Corporation, and we 
use this data to analyze the feasibility of our architecture. 

Our proposed servedess distributed file system is intended to 
provide a global name space for files, location-transparent access 
to both private files and shared public files, and improved 
reliability relative to a desktop workstation. 

These goals can be achieved with a centralized, server-based file 
system, but this has several disadvantages: Servers tend to be 
expensive because they need special hardware, such as high- 
performance I/O (to support multiple clients simultaneously) and 
RAID disks (for. reliability) [21]. They rely on system 
administrators, in whom the users must place their faith [28], both 
to authorize access and to perform reliability functions, such as 
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regular backups. Finally, they are vulnerable to geographically 
localized faults, such as a failed router or a broken network link. 

Serverless distributed file systems have been developed before 
(§ 6), but these have all assumed that client machines are mutually 
trusting. This assumption greatly eases the system design, but we 
befieve it is unrealistic, especially in a large-scale system. If we 
can build a system that works without requiring trust, then the 
system can function with no central administration: The owner of 
each machine determines who can store files on it, and owners 
establish contracts with other machine owners to collaboratively 
share their resources. With no central administrator, any user can 
add resources to the system. One can even add userless client 
machines to function as dedicated servers. 

The lack of trust between clients pervades our entire design. We 
need to use cryptographic techniques to ensure data privacy and 
integrity. We also need to create and securely distribute multiple 
replicas of each file throughout the system, both to prevent a 
malicious user from easily destroying all copies of any given file 
and because we cannot expect users to significantly alter their 
behavior with regard to keeping their machines on and available. 

The need for multiple file replicas significantly increases the 
storage demand. However, since disk space is inexpensive and 
becoming more so all the time [25], we consider this an 
acceptable trade-off. Also, previous research [7] has shown a 
significant amount of flee storage space on client machines. This 
inspired us to investigate how well our proposed system would 
work if deployed on an existing client-computing infrastructure, 
without adding any new resources to support our system. This 
question is the primary concern of the present paper, which we 
answer by measuring file-system space, machine availability, and 
machine load on client machines in a commercial environment. 

The remainder of this paper describes our system architecture, 
explains our measurement methodology, presents our results, and 
analyzes these results in terms of our proposed architecture. 

2. SYSTEM ARCHITECTURE 
The principal construct of our proposed system is the globalfile 
store, which is a logically monolithic file system indexed by a 
hierarchical directory tree. Although logically monolithic, the 
global file store is physically distributed among the disks of the 
client machines participating in the distributed file system. 

Each disk of a participating machine is partitioned into three 
regions: a scratch area, a global storage area, and a local cache. 
The scratch area holds ephemeral data, such as virtual-memory 
paging files and temporary files. The global storage area houses a 
portion of the global file store, which is accessible by other 
machines in the distributed system. The local cache is of variable 
size, caching all files accessed within a certain period of time (the 
cache retention period), like some in-memory file-system buffer 
caches [19, 22, 26] and unlike traditional fixed-size caches. 

To provide high availability and reliability in a not-fully-trusted 
environment, our proposed system makes multiple replicas of 
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each file and distributes them among the global storage areas of 
the client machines. We define the replication factor as the 
number of distributed replicas of each file. 

Since file availability and reliability are drastically affected by the 
file replication factor, it is important to maintain a minimum 
number of replicas for each file. To ensure sufficient disk space 
for these replicas, our proposed system enforces quotas [16] on 
the space available to the users of the file system. We propose 
that each user's space allotment depend on how much space the 
user has contributed to the global store. 

Part of the local cache and global storage area is reserved for a 
highly available, reliable, global, distributed directory service, 
much like that provided by xFS [1]. Each machine can use this 
service to locate replicas of requested files. This directory must 
be maintained in a strongly consistent fashion, to ensure that 
clients see the latest version of each file. 

2.1 Efficiency Considerations 
Our proposed system can increase the usable space in the global 
file store through two techniques. First, it can compress files 
before storing them and decompress them on the fly when they are 
read [26]. Second, it can coalesce distinct files that happen to 
have identical contents [5]; for example, many users may store 
copies of a common application program in the global file store, 
and these can be coalesced into a single instance, prior to 
replicating this instance among multiple machines. For clarity, we 
refer to logically distinct files with identical content as duplicates, 
and we refer to the file copies our system generates as replicas. 
We plan for our system to employ a lazy-update strategy, meaning 
that the system waits for a short time after a file is written before 
updating the file's replicas. Since a large fraction of written files 
are deleted or overwritten within a few seconds [29], lazy update 
can significantly reduce file-update traffic. Lazy update also 
allows a file to be written without requiring all (or even a quorum) 
of the replicas to be immediately available. The disadvantage of 
this approach is that the content of newly written files will briefly 
reside on only one machine, so loss of that machine will result in 
loss of the update. The directory service must keep track of which 
replicas contain up-to-date data, so users will not accidentally 
access out-of-date versions of files. 

Since file replicas are distributed among multiple machines, our 
system can select which machine should be accessed to service a 
client request [30]. There are two primary considerations in this 
decision: First, the selected machine should be topologically 
close to the machine that is requesting the file, to minimize both 
transmission delay and generated network traffic. Second, the 
selected machine should be lightly loaded, to minimize both read 
delay and performance impact on the sending machine. The 
impact on the sending machine can also be reduced by performing 
non-cached reads and writes, to prevent buffer cache pollution. 

If remote reads of very  popular files are targeted at a small 
number of machines, those machines could become overloaded. 
Our system can avoid creating these hotspots by allowing 
machines to copy files from other machines' on-disk local caches. 
As a side benefit, this improves the availability of popular files, 
since the effective number of replicas is substantially increased. 

2.2 Replica Management 
In our proposed system, the selection of machines for storing file 
replicas is driven by the availability of those machines. The 
system measures machine uptimes and distributes replicas so as to 
maximize the minimum file availability. (§ 2.2.1 describes such a 
replica-placement algorithm.) 

In selecting locations for replicas of a given file, the system could 
select a set of machines whose uptimes are negatively correlated, 
thus reducing the likelihood that all machines containing a replica 
will be down at the same time. However, our measurements 
(described in § 3.2.2 and reported in § 4.2.3) suggest that this 
would provide little marginal benefit. 

Our system can improve the availability of sets of related files by 
storing them in the same locations. If a user needs a given set of 
files to accomplish a task, then if any of those files is inaccessible, 
the task cannot be completed; therefore, it is beneficial to store 
related files together, so that either all or none of the files are 
available. Our system could attempt to determine relatedness of 
files by observing file access pattems, but we propose a simpler 
approach for at least the initial implementation: Since files 
accessed together temporally tend to be grouped together 
spatially, replicas for all files in a given directory are stored on the 
same set of machines, and entire directories are cached together. 

When a new machine joins the system, its files are replicated to 
the global storage areas on other machines; space for those 
replicas is made by relocating replicas of other files onto the new 
machine. Similarly, when a machine is decommissioned, the 
system creates and distributes additional replicas of the files 
stored on that machine. 

Machines join the system by explicitly announcing their presence; 
however, machines can leave without notice, particularly if they 
leave due to permanent failure, such as a disk-head crash. If the 
system notices that a machine has been down for an extended 
period of time, it must assume that the machine has been 
decommissioned and accordingly generate new replicas; 
otherwise, the possibility of another failure can jeopardize the 
reliability of files with replicas on that machine. 

2.2.1 Replica management - placement algorithm 
Ideally, replicas should be assigned to machines so as to maximize 
the minimum availability of any file, while also maximizing the 
minimum reliability of any file: The latter goal merely requires 
minimizing the variance of the replica count, whereas the former 
is more involved. Measured logarithmically, the availability of a 
file equals the sum of the availability of all machines that store a 
replica of the file, assuming randomly correlated machine uptime. 

The following heuristic algorithm yields a low availability 
variance: Set the provisional availability of all files to zero; then, 
iteratively select machines in order of decreasing availability; for 
each selected machine, assign the files with the lowest provisional 
availability to the selected machine, and update the provisional 
availability of those files; repeat until all machines are full. 

Unfortunately, the above algorithm does not minimize reliability 
variance, so we modify it as follows: If an assignment of a file to 
a machine would reduce the remaining free space to below that 
necessary for any two files to differ in replica count by at most 
one, abort the above iteration and begin the following procedure: 
Iteratively select machines in order of increasing availability; for 
each selected machine, identify the file with the highest 
provisional availability from those with the lowest replica count, 
assign it to the selected machine, and update the provisional 
availability of that file; repeat until all machines are full. 

2.3 Data Security 
Distributing multiple replicas of a file protects not only against 
accidental failure but also against malicious attack. To destroy a 
file, an adversary must compromise all machines that hold replicas 
of that file. To prevent an adversary from coercing the system 
into placing all replicas of a given file on a small set of machines 
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under the adversary's control, the system must use secure methods 
for selecting machines to house file replicas. 

File-update messages are digitally signed by the writer to the file. 
Before applying an update to a replica it stores, each machine 
verifies the digital signature on the update and compares the 
writer's identity to a list of authorized writers associated with the 
file. This prevents an adversary from forging and distributing file 
updates. 

To prevent files from being read by unauthorized users, the 
contents of files are encrypted before they are replicated. 
However, encryption could interfere with the automatic detection 
and coalescing of duplicate files, since different users may encrypt 
identical plaintext files with different keys, which would normally 
produce different ciphertext files. We have developed a 
cryptographic technology, called convergent encryption, that 
allows the detection and coalescing of identical files even when 
these files are encrypted with separate keys. Rather than 
enciphering the contents of a user's files directly with the user's 
key, the contents of each file are one-way hashed, and the 
resulting hash value is used as a key for enciphering the file 
contents. The user's key is then used to encipher the hash value, 
and this enciphered value is attached to the file as meta-data. The 
user decrypts a file by first deciphering the hash value and then 
deciphering the file using the hash value as a key. With this 
approach, two files 'with identical plaintext will also have identical 
ciphertext, irrespective of the secret keys used to encrypt them. 

3. METHODOLOGY 
To analyze the feasibility of deploying our proposed system on an 
existing computing infrastructure, we collected usage data from a 
large number of desktop personal computers at Microsoft 
Corporation. We measured contents of file systems, availability 
of machines, and load on machines. 

To judge the breadth of applicability of our results, we partitioned 
our measurements into six categories by the job function of each 
machine's owner: administration (clerical), business (marketing, 
accounting, legal), management, non-technical development 
(writers, artists), technical development (programmers, testers), 
and technical support. Roughly half of all machines belong to 
technical developers; the other half are distributed approximately 
equally among the remaining categories. 

3.1 File System Measurement 
We measured a set of file systems to determine the amount of disk 
space that is free and the amount of disk space that would be free 
if all duplicate files were eliminated. We also use the measured 
data to estimate the rate of cache misses, the size of local system 
caches, and the rate of file writes. 

3.1.1 Disk usage measurement 
We collected two data sets for our analysis of disk usage. In 
September 1998, we asked Microsoft employees to run a scanning 
program on their Windows and Windows NT computers that 
collected directory :information (file names, sizes, and timestamps) 
from their file systems [7]. By this means, we obtained 
measurements of 10,568 file systems [8]. 

In August 1999, we remotely read the performance counters (free 
disk space, total disk space, and logon name of the primary user) 
of every Windows NT computer we could access. By this means, 
we obtained measurements of 8669 file systems. 

3.1.2 Disk content measurement 
In February 1999, we asked a random subset of the participants in 
the 1998 study to run a scanning program that computed and 

recorded hashes of all the files on their file systems. By this 
means, we obtained data from 550 file systems, which we used to 
determine the amount of duplicate file content. 

3.1.3 File access rate estimation 
We used the timestamps in the 1998 data set to estimate the rate at 
which files are read and written. We determined each file's last 
read time as the most recent timestamp (create, update, or access) 
on the file, and its last write time as the most recent of the create 
and update timestamps. 

There are three aspects of file access rate that are relevant to our 
design: the miss rate of the local file cache, the size of the local 
file cache, and the amount of write traffic sent to file replicas on 
other machines. We consider only files that would be stored in 
the global file store, so we excluded inherently local files, 
including the system paging file and those files in temporary 
directories or the Internet browser cache, all of which account for 
2% of the bytes in the data set. 

Cache miss rate is a function of the cache retention period. We 
estimate miss rate as follows: For a cache retention period of n 
days, the files in directories last accessed n+l days ago will exit 
the cache on the current day. Over the long term, the rate at 
which files exit the cache must match the rate at which they enter 
the cache, so the rate of file exit approximates the rate of file 
entry. Since a file enters the cache only in response to a miss, the 
cache entry rate equals the cache miss rate. 

We estimate the cache size similarly. For a cache retention period 
of n days, the size of the local cache is equal to the sum of the file 
sizes in all directories accessed in the last n days. 

Write traffic rate is a function of the lazy-update propagation lag. 
We estimate write traffic rate as follows: For a propagation lag of 
n hours, files last written between 2n hours ago and n hours ago 
will have been propagated during the past n hours. 

3.2 Machine Availability Measurement 
To determine file availability in our proposed system, we need to 
know machine uptimes, whether these uptimes are consistent over 
time, and whether the uptimes of different machines are 
correlated. When our proposed system sees a machine go down, 
it needs to predict how long the machine will stay down. Our 
reliability calculations require knowing machine lifetimes. 

3.2.1 Machine uptime measurement 
We measured machine availability by pinging 64,610 machines 
every hour for five weeks, from July 6 through August 9, 1999. 
To disregard any staleness of the name database as well as the 
attrition of machines during the sample period, we restricted our 
analysis to the 51,662 machines that responded to at least one 
ping during the week of August 10 through August 16, 1999. 

3.2.2 Machine uptime correlation calculation 
To determine whether the uptimes of different machines are 
correlated, we computed, for every pair of machines, a temporal 
correlation value by adding one for every ping snapshot that the 
machines were both up or both down, and subtracting one for 
every snapshot that one machine was up and the other was down. 
We normalized the result by dividing by the count of snapshots. 

3.2.3 Machine downtime prediction calculation 
We can use the time tp a machine has been off to predict the 
amount of additional time tf it will remain off, using the formula: 

F # l  p 
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In this equation, fix) is the distribution of downtime as a function 
of the enclosing interval, which we determine from our data. 

3.2.4 Machine lifetime measurement 
To analyze machine attrition rates, we pinged 64,610 machines 
several times per day for 100 days, from July 6 through October 
13, 1999. We scanned backwards through the data to determine 
the last time each machine responded to a ping. If machines have 
deterministic lifetimes, then the rate of attrition is constant, and 
the count of remaining machines decays linearly. The expected 
machine lifetime (meaning the lifetime of the machine name, not 
the physical hardware) is the time until this count reaches zero. 

3.3 Machine Load Measurement  
We measured CPU and disk load by running a program on six 
data-collection computers that iteratively selected a random 
machine and remotely read the performance counters (CPU load 
and disk load) of that machine. Over 18 days in October 1999, 
we collected 178,801 measurements from 3908 machines. 

CPU load was measured as the fraction of cycles expended in 
processes other than the idle process. Disk load was measured as 
the number of disk operations performed per second. 

3.4 Measurement  Errors and Biases 
Our data-collection techniques are vulnerable to many sources of 
experimental error and measurement bias. In general, we are not 
able to quantify the effects of these errors on our results, but we 
can at least enumerate them, so their presence will not be ignored. 

Since each machine's owner determined whether to run the file- 
system scanning program (§ 3.1), these results could be affected 
by self-selection bias. 

The file timestamps we collected (3 3.1.1) and analyzed (3 3.1.3) 
can be reset by user-level software; therefore, they may be 
unreliable. In addition, it took several minutes to perform the 
scan of each file system, so this limits the granularity with which 
we can assess the elapsed time since file accesses. 

Our use of static timestamps to determine dynamic access rates 
prevents us from observing burstiness in file accesses. We 
therefore confine ourselves to mean-value analysis. 

The file access times derived from the file timestamps are biased 
towards integral multiples of one week, for the following reason: 
Individual users ran the scanning program at times of their own 
choosing, so they were disproportionately likely to do so on a 
weekday. Since files are more likely to be accessed on a weekday, 
the time since last access reflects this congruence. 

Our remote reads of performance counters were restricted to a 
subset of the Windows NT/2000 machines on our corporate 
network, since performance counters are not present in Windows 
95/98, a machine's owner can restrict access to them in Windows 
NT, and they are restricted by default in Windows 2000. 
Windows 2000 is most likely to be running on newer machines, 
which are likely to have larger-than-average disks. We used 
remote performance counters not only for file-system and 
machine-load measurements (3 3.1 & 3.3) but also to determine 
each machine's primary user (and thereby job category) for 
machine-lifetime measurements (3 3.2). 

Each hourly ping snapshot (§ 3.2.1) took between 19 and 28 
minutes to perform. This fuzziness slightly weakens our analysis 
of the correlation among different machines' uptimes. 

For the machine-lifetime measurements (3 3.2.3), we did not 
determine the machines' users until August 27, so we have no 
job-specific data for the first half of the observation period. 

The machine-load measurements (§ 3.3) overestimate the CPU 
and disk loads, because the monitoring itself increases these 
loads: The operating system dynamically loads the performance 
counter libraries when interrogated, and it unloads them after a 
period of non-use that is smaller than our mean time between 
same-machine samples. Therefore, sampled machines commonly 
loaded some amount of monitoring code before responding to our 
query, thus increasing their workload. The exact amount of code 
loaded depends on the particulars of each machine and on whether 
any other application or system component is already using some 
part of the monitoring subsystem. 

4. RESULTS 

4.1 File System Results 
From the file-system data we collected as described in § 3.1, we 
determined the amount of disk space that is free and the amount of 
disk space that could be freed by eliminating duplicate files. We 
also constructed an analytical model to show the relationship 
between content duplication and population size. From the 
recorded file timestamps, we estimate the rate at which directories 
of files are accessed and the rate at which files are ~Titten. 

4.1.1 Free disk space 
The self-selected September 1998 data show 53% of overall disk 
space in use. The remotely read August 1999 data show 50% of 
overall disk space in use. Since these two data sets incur different 
types of bias, it is reassuring that their results are quite similar. 

4.1.2 Duplicate fi le content 
From the February 1999 measurement of disk content, we 
calculate the space savings from removing duplicate files from the 
population of file systems, as illustrated in Figure 1. 

The open circle on the graph shows that removing duplicates from 
the whole population of 550 file systems reclaims 47% of used 
file space. The small dots show the space reclamation for random 
subsets of the total population; we selected ten subsets in each 
power-of-two size from 1 to 512 file systems, with the selection 
probability weighted by file-system size. 

The diamonds, squares, and triangles in Figure 1 show the effect 
of removing duplicate files within each subset of file systems 
corresponding to one of our six job categories. In general, the 
job-specific subsets contain a larger fraction of duplicated content 
than do comparably sized random populations. This indicates a 
greater commonality of content among members of a specific job 
category than among arbitrary sets of file systems. 

Most of the space savings comes from eliminating duplicates of 
files with small duplication factors. Figure 2 shows the space 
reclaimed by eliminating duplicates of only those files with a 
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Figure 1: Reclaimable space versus population size 
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Figure 2: Reclaimable space versus min imum duplicat ion 

minimum number of duplicates, based on the entire population of 
550 file systems. Only about 5% of file space is reclaimed by 
eliminating duplicates of files with at least 100 duplicates, less 
than 30% with a minimum of 10, and 47% when considering files 
with at least one duplicate. 

4.1.2.1 Duplicate f i le  content - analytical model  
We have developed a model to describe how recoverable space 
relates to the population size. The solid line in Figure 3 shows the 
measured distribution of  content popularity from the February 
1999 data. The x-axis indicates the likelihood that any given file 
system will contain an item of file content (one file, where the 
distribution is weighted by file size), and the y-axis indicates the 
cumulative fraction of  all content. For example, 90% of all file 
content has popularity of less than 0.1, so it will be found on no 
more than 1 out of  10 file systems. 

Since the distribution of  content popularity is a distribution of 
likelihood, we approximate it with a beta distribution [10], B(x), 
(a = 0.12, fl = 4.2), shown by the dotted line in Figure 3. We use 
a beta distribution rather than the more commonly considered Zipf 
distribution [6] for two reasons: First, the Zipf distribution is 
discrete and applies to a specific count of  objects, whereas we 

• want  a continuous distribution that applies to an indeterminate 
count of objects. Second, we are not hypothesizing a distribution 
for content popularity; we know the actual distribution (as shown 
by the solid line in Figure 3), and we merely want an analytical 
function to approximate it, to facilitate our analysis. 

When adding a new file system to an existing population of k file 
systems, the amount of new content (content not already present 
in the existing population) added by the new file system is: 
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Figure 4: Cumulat ive  directory-data size vs. last access t ime 

Therefore, the fraction of  used space that can be recovered by 
eliminating duplicate files in a population of n file Systems is: 

n - i  R(n)=l -c~N(k)=l  c F(t~+fl)  4- cF(ct+~)F(fl+n) 
k=o ( a c - 1 ) F ( a + f l - l )  (ot-1) F ( f l ) F ( o ~ + f l + n - 1 )  (3)  

The constant c accounts for files that are duplicated within a 
single file system. From our data, we calculated that the mean 
fraction of unique data within a single file system is c = 0.88. 

The solid line in Figure 1 plots R(n) versus population size n. 
Note the sigmoid shape of  the graph and the fairly good 
correspondence to the results for random subsets of  the actual 
population. The Values predicted by the model pass Wilcoxon 
signed-rank tests [10] for each power-of-two-size group of 10 
random subsets, at a 0.01 level of  significance. 

4.1.3 File access activity 
From the September 1998 measurements, Figure 4 shows the 
cumulative amount of data in accessed directories, as a fraction of  
total disk space, versus the elapsed time since that data was last 
accessed. Most of  the separation among job categories is due to 
variation in the fraction of disk space in use. For example, 
administration systems generally have a smaller fraction of  disk 
space in use than other job categories have, so although the 
fraction of used disk space they access in a given time is 
comparable to that of  other categories, this represents a smaller 
fraction of  total disk space, which is what is plotted in Figure 4. 

Figure 5 shows the count of  directories that were last accessed on 
each day prior to the day each measurement was taken. Figure 6 
shows the volume of data in the accessed directories on each day 
prior to the measurement date. Overall, 35 directories totaling 50 
megabytes of data were touched per file system during the 24 
hours preceding the measurement snapshot. There is noticeable 
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Figure  5: Directory count  vs. last access t ime 
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Figure 6: Directory-data size vs. last access time 

variation among job categories, with administrators touching only 
12 directories totaling 14 megabytes of data per file system. As 
described in § 3.4, our measurement technique biases the access 
times towards integral multiples of one week, as is shown by the 
weekly periodicity in Figures 5 and 6. 

Figure 7 indicates the total size of all files written within each 
hourly period preceding the measurement snapshot. For files 
written within one hour of the snapshot, the overall rate was about 
32 MB / hour / file system. The various job types ranged from 65 
MB / hour / file system for business to 24 MB / hour / file system 
for technical developers. Merely 7 MB / hour / file system is 
written between one and two hours before the snapshot, which 
implies that most written data is overwritten fairly soon, 
consistent with several other studies [4, 20, 29]. As described in 
§ 3.4, the granularity of the measurement data prevents assessing 
write rates for periods substantially less than one hour. 

4.2 Machine Availability Results 
From the machine-availability data we collected as described in 
§ 3.2, we analyzed the uptime distribution of machines on our 
network, the consistency of those uptimes over time, and the 
correlation of the uptimes of different machines. We also 
estimated the length of time that a down machine will remain 
down. Lastly, we calculated the expected lifetime of machines. 

4.2.1 Machine uptimes 
From the July-August 1999 ping measurements, Figure 8 shows a 
time plot of machine availability. The count varies by about 2500 
machines over a one-day period and about 5000 machines over a 
one-week period. We do not know what caused the negative 
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spike on July 31 at 15:00; this sample does not contain a large, 
contiguous series of non-responses, so it does no t  obviously 
appear to be a network problem. 

The solid line in Figure 9 plots the fraction of time each machine 
is up, where the machines are sorted by their uptimes. Half of all 
machines are up over 95% of the time. The dotted line in Figure 
9 shows machine availability measured in nines, calculated as the 
negative decimal logarithm of the fraction of downtime. It is 
interesting to note that this curve is approximately a straight line. 

4.2.2 Machine uptime consistency 
Figure 10 is a density plot, with logarithmically scaled shading, 
that shows the number of hours per week each machine is up 
during the second through fifth weeks of our sample period versus 
the number of hours it is up during the first week. Since most 
machines are up more than 95% of the time, this figure is heavily 
weighted toward the upper right corner. 

There are three noticeable groups of machines in this figure: First 
are the machines that are turned off nightly, which are seen as a 
loose cluster in the region of 45 hours per week; the uptimes of 
these machines are fairy consistent from week to week. Second 
are the machines that are on for the first week but turned off for 
the first weekend, which form a vertical band around 105 hours 
per week; the vertical spread indicates that these are somewhat but 
not strongly likely to be turned off on subsequent weekends. 
Third are the machines left on for nearly all of the first week, 
which form a dense stripe along the upper part of the right edge; 
the very dark point at the upper right comer indicates that these 
tend to be on for most of the remaining time, but the tail down the 
right edge shows that this tendency is not absolute. 
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Figure 10: Week 2--5 uptimes vs. week 1 uptime (log scale) 

4.2.3 Machine uptime correlation 
We computed a temporal correlation value p for each pair of 
machines using the method described in § 3.2.2. The dark curve 
in Figure 11 shows the cumulative distribution of this correlation 
value for all pairs of machines. 73% of all pairs of machines 
exhibit positive uptime correlation, and 20% of all pairs exhibit 
very strong positive correlation (p > 0.95). 

Figure 11 also plots what this cumulative correlation curve would 
be if uptimes for all machines were randomly correlated and if 
they were perfectly correlated, in each case using the measured 
distribution of machine uptimes from Figure 9. The actual curve 
is much closer to the random curve than to the perfect curve, 
indicating that the vast majority of the observed positive 
correlation is due to the fact that most machines are up most of the 
time, and the uptimes are not otherwise very correlated. 

The degree of uptime correlation varies by job function. 
Administrator and business systems are more correlated than 
others; however, they are much closer to random than to perfect. 

4.2.4 Machine downtime interval prediction 
Figure 12 shows the distribution of machine downtime versus 
downtime interval length, including only downtime intervals that 
began and ended within our 5-week observation interval, 
accounting for 83% of all observed downtime. The distribution 
shows a daily periodicity, since changes in machine on-or-off 
state tend to happen during workdays. There are two large spikes 
near the left edge, indicating downtime due to nightly turnoffs and 
two-day (presumably weekend) turnoffs. 
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We can use the time tp a machine has been off to predict the 
amount of additional time tf it will remain off, using Equation 1 
defined in § 3.2.3. To estimate fix), we use a mix of three 
distributions: a normal distribution [11] (,tit = 14, trl = 1.9) for 
nightly 14-hour intervals, a normal distribution (,tt2 = 64, if2 = 2.1) 
for weekend 64-hour intervals, and a gamma distribution [10] (a = 
0.68, fl = 180) for the remainder. The mixing coefficients are 
0.11, 0.18, and 0.71, respectively. This curve is shown by the 
dotted line in Figure 12. 

Figure 13 shows the result of applying Equation 1 to the fitted 
distribution. After 72 hours of downtime have been observed, the 
expected remaining downtime increases monotonically with 
increasing observed downtime. Prior to this point, the curve is 
non-monotonic due to the high probability that the downtime is 
part of a nightly or weekend turnoff. 

4.2.5 Machine lifetimes 
From the July-October 1999 ping measurements, Figure 14 shows 
a plot of the count of remaining machines versus time. This curve 
is approximately a straight line, which is the expected result if 
machines have deterministic lifetimes (§ 3.2.4). The expected 
machine lifetime is the x-intercept of the line, which is 290 days. 

As described in § 3.4, we have no job-specific data for the first 
half of the ping period. For the second half, fitting lines to the 
curves for different job categories yields x-intercepts that vary 
from 270 days (for business) to 380 (for technical development). 
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Figure 14: Machine attrition 

4.3 Machine Load Results 
From the machine-load data we collected as described in § 3.3, we 
analyzed the CPU load on machines, the disk loads on machines, 
the correlation of these two loads to each other, and - with the 
availability data described in § 3.2 - the correlation of CPU load 
to machine uptime. 

4.3.1 CPU load 
From the October 1999 load measurements, we examined CPU 
load versus time of week, as shown in Figure 15. Mean CPU load 
ranges from about 13% load during the night to about 18% during 
the day, and the median CPU load varies from about 1% to 2%. 
This figure also shows the fraction of sampled machines that are 
100% loaded, which varies from about 7% to 13%, and which is 
weakly correlated to time of week, showing slightly higher values 
on nights and weekends. 

4.3.2 Disk load 
Figure 16 shows disk load versus time of week. Mean disk load 
ranges from about 9 operations per second to about 25, with one 
notable spike of 59 at midnight on Sunday evening. We 
conjecture that the spike corresponds to a common, periodic 
maintenance task, such as file-content indexing or backup. As 
with CPU load, the median disk load is much more uniform and 
varies from about 8 to 10 operations per second, which represents 
an essentially idle machine, since a typical modem machine has a 
peak performance of several hundred disk operations per second. 
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Figures 17 and 18 are cumulative distributions of CPU load and 
disk load, respectively. The variation due to job category is 
relatively small. The CPU distribution is bimodal: 9% of samples 
reflect 100% load, and most other samples reflect near idleness. 

4.3.3 Machine load correlation 
CPU loads are somewhat correlated with disk loads. We 
computed a Spearman rank-correlation coefficient [10] of 0.27 for 
these two values across all samples. 

The fraction of time that a machine is up is not correlated to the 
mean CPU load of the machine while it is up. We computed a 
Spearman rank-correlation coefficient of -0.0087 for these two 
values across all machines. 

100% 
® 9O% 80% 
• 70% 
° ~ 60% 

~40% 
--  30% 

~, 10% 
0% 

20 ,40 60 80 100 

CPU load (%) 

~ administratlon business ~ management 

....... non-tech dev ....... tech dev ....... tech support 

all 

Figure 17: Cumulative distribution of  CPU load 

e 2  

. /  
: 

0 I0 20 30 40 50 60 

disk operations per second 

~ administration business ~ m a n a g e m e n  

. . . . . . .  non-tech dev . . . . . . .  tech dev . . . . . . .  tech support 

all 

Figure 18: Cumulative distribution of  disk load 

41 



www.manaraa.com

5. FEASIBILITY ANALYSIS 
In this section, we analyze the feasibility of deploying our 
proposed system on the desktop infrastructure measured in § 3. 
We determine how well our system would work if we added no 
new hardware resources to the environment. For this analysis, we 
use the September 1998 file-system data, but we conservatively 
assume only 47% space reclamation from duplicate elimination, 
which is the value obtained from the much smaller February 1999 
data set. Since we have no data on file compressibility, we ignore 
this potential source of additional reclaimed space, although it 
may dramatically improve the feasibility results. 

A critical design parameter is the cache retention period. 
Increasing the cache retention period increases the expected size 
of the cache, which decreases the space available for the global 
file store, thus decreasing the file replication factor. Figure 4, 
showing cumulative data size in accessed directories versus 
elapsed time since access, can be interpreted as cache size versus 
the cache retention period. The solid line in Figure 19 shows the 
file replication factur as a function of the cache retention period. 

5.1 Availability Analysis 
Figure 20 shows median file availability, as a function of 
replication factor, when files are placed as described in § 2.2.1. 
The y-axis is scaled in nines, which is the negative decimal 
logarithm of the fraction of time that a file is unavailable. Figure 
5, showing directory count versus last access day, can be 
interpreted as the cache miss rate versus cache retention period, 
following the argument in § 3.1.3. 

Given file availability a (nines) and cache miss rate m (directories 
per day), the probability of access failure for any given file 
system's files on any given day is: 

Pr  = 1 - ( 1 - 1 0 - " ?  (4 )  

The dotted line in Figure 19 shows this probability expressed 
reciprocally as mean time between failures, versus the cache 
retention period. The fluctuation is due to measurement artifact in 
the access times, as discussed in § 3.4. The order of magnitude is 
one unfilled file request per file system per thousand days. 

5.2 Reliability Analysis 
If machines always notify the system before being permanently 
decommissioned, overall file reliability is governed by the disk 
failure rate [25]. In particular, the likelihood of permanently 
losing a file is exponentiated by the replication factor. 

However, if machines do not always notify the system, reliability 
is substantially degraded. To determine a lower bound-on  
reliability, we assume that machines always disappear without 
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Figure 20: File availability vs. replication factor 

warning. The mean time between loss of one machine full of 
replicas is equal to the mean machine lifetime, 1. A directory full 
of files will be permanently lost if all machines containing the 
other replicas of these files are decommissioned before the system 
recognizes the loss and creates new replicas. Given d directories 
per machine, r replicas, and lag r between a machine's turnoff and 
the creation of replacement replicas, the mean time between 
losing a directory of files per machine is: 

l ( l  ] "-~ 
uL =7~7j (5) 

As an example, for r = 3 (Figure 19), l = 290 days (§ 4.2.5), r = 3 
days (§ 4.2.4), and d = 1700 [7], the lower bound on the mean 
time between one directory loss per machine is/~L = 1600 days. 

5.3 Performance Analysis 
Figure 6, showing data-access volume versus last access day, can 
be interpreted as the cache fill rate versus cache retention period, 
following the argument in § 3.1.3. For an example cache 
retention period of one week, the average network traffic from 
cache fills is a very modest I0 MB / day / file system. 

Figure 7, showing data-write volume versus last write hour, can 
be interpreted as the update propagation rate versus lazy-update 
propagation lag. For an example propagation lag of one hour, the 
average network traffic from update propagation is 7 MB / hour / 
replica / file system, which is also quite modest. 

Although these rates ignore burstiness in file activity (§ 3.4), they 
are so low that a typical modern desktop PC needs only a few 
seconds to service the entire traffic it would see in a typical day. 

6. RELATED WORK 
Most distributed file systems are implemented on centralized 
servers [23]. Performance is enhanced by local caching of files 
[13] on client machines. High availability is achieved with fault- 
tolerant hardware, replication across clustered servers [26, 30], 
and access to locally cached files when the server is inaccessible 
[14, 24]. High reliability is achieved through RAID [21] or 
replication [ 12]. 

Previous serverless distributed file systems include xFS [l] and 
Frangipani [27]. The xFS file system, part of the Berkeley NOW 
project [2], focused on providing support to distributed 
applications on workstations interconnected by a very high- 
performance network. Frangipani is a file system built on the 
Petal [15] distributed virtual disk, which is implemented in a 
decentralized fashion. Both systems provide high availability and 
reliability through distributed RAID semantics. Whereas xFS did 
not focus on administration issues, Petal provided support for 
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transparently adding, deleting, or reconfiguring servers. Both 
systems assume trusted machines and are intended primarily for 
use within a centrally administered machine cluster. 

There have been many published studies of file systems and 
desktop workstations [3, 4, 9, 17, 18, 20], focusing mostly on 
Unix systems. Only two prior studies have examined PCs [7, 29]. 

7. SUMMARY AND CONCLUSIONS 
We presented an architecture for a serverless distributed file 
system that does not assume mutual trust among the client 
computers. The system provides security, availability, and 
reliability by distributing multiple encrypted replicas of each file 
among the client machines. 

To assess the feasibility of this system if deployed on an existing 
desktop infrastructure, we collected data from client machines at 
Microsoft Corporation. 

We found that only half of all disk space is in use, and by 
eliminating duplicate files, this usage can be significantly reduced, 
depending on the population size. Half of all machines are up and 
accessible over 95% of the time, and machine uptimes are 
randomly correlated. Machines that are down for less than 72 
hours have a high probability of coming back up soon. Machine 
lifetimes are deterministic, with an expected lifetime of around 
300 days. Most machines are idle most of the time, and CPU 
loads are not correlated with the fraction of time a machine is up 
and are weakly correlated with disk loads. 

Using our measurement data, we determined that if our proposed 
system were deployed on our measured desktop infrastructure, file 
availability is on the order of one unfilled file request per 
thousand days. The lower bound on reliability is around one 
directory loss per couple thousand days, but actual reliability 
should be much higher if machines generally notify the system 
before being permanently decommissioned. 

Since availability and reliability are exponentially sensitive to the 
number of distributed replicas, small increases in disk space can 
profoundly increase availability and reliability. For example, 
adding an average of one dollar's worth of disk space per machine 

can  nearly double the mean time between failures. Thus, in actual 
deployment of our proposed system, it would be wise to increase 
the available storage, either by increasing client-disk sizes or by 
adding userless client machines to the system. This is particularly 
true for small installations, which can reclaim little space through 
duplicate elimination. However, our measurements suggest that 
even deployed on an existing set of desktop computers in a large 
corporation, our proposed system would work fairly well. 
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